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1. Introduction

In the theory .and practice of the finite elements a considerable effort has been made

to design special approaches to deal with problems on domains with comers (especially,

cracks) and with problems on infinite domains.

In the case of nonsmooth boundaries the following approaches are the most typical:

(1A) Mesh Refinement([4],[6],[71,[8,[9],[13,[141,[25]).

(1B) Use of Special Elements([1],[2],[22],[26)).

(1C) Use of the Enriched (nonlocal) Bases Functions([161,[231).

In the case of the infinite domains, the widely used approaches are:

(2A) Domain Restriction Procedure([151,[171).

(2B) The Boundary Element Method and Combination of the Finite Element Method and

the Boundary Element Method( 18],[2 1]).

(2C) Infinite Element Approach((281,[291).

The method (1C) is in practice almost never used because this approach destroys the

architecture of the finite element method program. The method (1B) is to devise special

finite elements in which the approximation mimics the singularity in elements neighboring

singular points. By this the accuracy is increased, nevertheless the rate of convergence of

the h-version is not improved. By far the most effective approach for handling singularities

is the method (1A) but the success of it depends on the proper mesh refinement.

The method (2C) is not often used in practice. The Boundary Element Method haandles

well the problem with constant coefficients on domains with bounded boundary, but this

method has difficulties when the coefficients of the equation are not constant, the boundary

is unbounded, and is ineffective when the differential equation is not homogeneous. The

hybrid method between the Finite Element Method and the Boundary Element Method

is sometimes used but lies in the h-version and it has the same character and difficulty
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as (1B). The most widely used method in practice for dealing with infinite domain is

the method (2A). However the main concern in this approach is to choose the truncating

domain properly to get a desired accuracy.

There are three versions of the finite element method: the h- version, the p-vpsion, "nd

the h-p version. The h-version i3 the standard one, where the degree p of the elements is

fixed, usually on low level, typically p = 1,2,3 and the accuracy is achieved by properly

refining the mesh. The p-version, in contrast, fixes the mesh and achieved the accuracy

by increasing the degrees p of the elements uniformly or selectively. The h-p version is

the combination of both. In this paper, we are mainly concerned with the p-version of

the finite element method([8,[10]). We will see that the p-version in many cases avoids

naturally some difficulties arising in the h-version because it uses elements of large size.

The basic aspects of the finite element approach are

(a) The geometry, where the domain is defined and partitioned into elements.

(b) Creation of elemental stiffness matrices and elemental load vectors.

(c) Assembling elemental stiffness matrices and load vectors together to form the global

stiffness matrix A and the global load vector b

(d) Solving the system Ax = b

(e) Post processing.

The elemental stiffness matrices are based on the (elemental) mapping of the element

onto the standard element and the polynomial shape functions on the standard element.

The usual (elemental) mapping is typically of isoparametric or blending type.

In this paper, addressing two dimensional problems, we will show that the effective

use of other mapping (for example conformal mapping or quasi conformal mapping) in

conjunction with the usual (elemental) mapping in the frame of the p-version of the finite

element ,a,-thod yields an exponential rate of convergence at virtually no extra cost. This

approach can be directly and practically, without any changes, implemented in the p-

version of the Finite Element Code PROBE((241).
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The outline of this paper is as follows: In section 2 the generalized elements are intro-

duced and the conditions for elemental mappings to yield conforming elements are stated.

Also listed are some preliminary lemmas. In section 3 we prove that the p-version of the

finite clemrent mthod leads to an exponential rate of convergence when the exact solution

of the problem is analytic. In section 4 the method of auxiliary mappings is introduced. It

is shown that one can obtain an exponential rate of convergence at no extra cost when this

technique is applied to Laplace equations on domains with corners. In section 5 we show

that the mapping technique also works for general elliptic boundary value problems. In

section 6 this technique is applied to the problems on the exterior of the bounded domains.

Finally, the conclusions are summarized in section 7.

2. Preliminaries

Throughout this paper, Q denotes a simply connected (bounded or unbounded) open

subset of R 2 , where R 2 denotes the usual Euclidean space with x = (x 1 , X2) E R 2 . As

we mentioned above, the domain Q under consideration is partitioned into the elements

ei,, = 1,2,...n. By an element e we mean an open curvilinear triangle or rectangle. A

curvilinear triangle is a domain which is bounded by three smooth(analytic) arcs(sides)

whose ends are called the vertices. A curvilinear rectangle has analogous meaning. We

allow the triangle to be unbounded, where one vertex is located at oo analogously as in

the theory of complex variable. Then Qi = UjT , where by the bar we mean the closure in

R 2 . As usual, we will assume that ej fl e1 is either empty or is a common vertex or is an

entire common side.

By T and Q we denote the standard triangular element and the standard quadrilateral

element respectively as shown in Fig.2.1(a)(b). The coordinates in the standard plane are

denoted by = ('u, 2). As usual we define on the element e the finite element space S(e)
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which is the span of elemental shape functions, denoted by N,(x),x E e, i.e. S(e) =

spanN c(x).

By the standard shape function A',( ) we mean the shape functions on the standard

element E(E = T or E = Q) which are divided into the groups of (1) nodal, (2) side

and (3) internal shape functions. We assume as usual that a bijective smooth elemental

mapping €b from E to e is such that ¢ (P ) = x E e, for E E, where E = T or E = Q

according as e is (curvilinear) triangular element or (curvilinear) quadrilateral element.

Then the elemental shape functions Nf are related to the standard shape function by

N(x) = AKI(',-1(x))( equivalently by N (e( )) = X'()). Alternatively we denote it by

N = A' , o '7-( or K, = N o ¢D). We associated to every element e, of the partition of Ql

the mapping ¢,. We will assume that these mappings satisfy the usual conditions used in

the finite element method that lead to conforming finite elements. This means that if A is

a common vertex of the element ek, , j = 1, 2, ...m and N iek are the nodal shape functions

associated to the vertex A then the function v such that

v(x) =N'(x) onek,j=1,2 , ...m

v(x) = 0 for x ek,j =1,2,...m

is a continuous function on Q . Similarly if -y is the common side of elements ek, and ek,

and

N"i ',j = 1,2

are the side shape functions associated to the common side then the function v defined by

v(x) = N" (x) on ej 1,2.

v(x) = 0 for x ek,j =1,2.

is a continuous function on Q . Finally the supports of the internal shape functions are iP

the element.
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There axe many possible elemcntal mappings. We will impose some restriction on the

elemental mappings. Especially we will assume that -e has the circular arc property: Let

e be a curvilinear triangle with a circular side as shown in Fig. 2.2, then (De linearly

transforms the length of arc of the standard triangle on the length of arc of the element

e. If e is a curvilinear quadrilateral element with a circular side, the meaning of 1D

with circular property is analogous. Let us note that the code PROBE(Q24]) is using the

elemental mappings with circular arc property.

In general we will consider two domains Q and S in R 2 such that (1(Q) = Q where 4 is

a smooth bijective mapping of Q onto S . If u is a funtion defined on Q then i will denote

the function defined on f2 by

u o T-1( or u = a o ')

Obviously if Q = e, 1 = T( or Q) then %P = cD- 1 as a special case of notation we have used

above. When there is a mapping p which transforms a curvilinear triangular (quadrilateral)

element e onto an element e* of the same type, we will construct the elemental mapping

4Ie. of the standard element E(E = T or Q) onto e* so that
0 De.N, o o - 1

=A" o P-1 o P-1 for any shape function i on E.

Note that if p- 1 is a mapping, from an element e* with a circular side onto another element

e with a circular side, which is linear in the arc-length, and if ,. has circular arc property

then the composite mapping V - 1 o 4%. also has the circular arc property. We have seen

that the main objective is to create the set S(e) of elemental shape functions which led

to the conforming base functions. We can now use not only one elemental mapping but a

family of such mappings. For example, let ; - 1 maps j*, an element with circular side,onto

c . an element with circular side, then we can enrich the space of elemental shape functions

for e by functions Xi o (D,-.1 o c, where /Vi denotes the standard shape functions which are

6
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zero on the side of the standard element that is not associated to the circular side. So

far we mentioned only the objective to construct the elemental shape functions. The next

objective is to construct them so that local stiffness matrices can be easily computed.

Returning now to the general mapping %P of Q onto Q , we denote the Jacobian of P-1

by J(T- 1) and its determinant by jJ(P-')l and we will assume it is positive on . Then

we define

M = (IJ(- 1 ))'/ 2 (J(T) o %-')

and we get an obvious lemma.

Lemma 2.1. Suppose A = [aij],aij E L.(Q),1 < i,J < 2 andifQ = M{aioT- 1 }M T =

{ qo }, then we get

au a v f aft a
(2.1) a U(X) O =

and q() EL.().

We are particularly interested in the special case when A = I,the identity matrix and T

is a conformal mapping of Q onto Q . Then we have

Corollary 2.1. If T is a conformal mapping and A = I then Q = I, that is,

-J Vu. Vdx = VI> V d .

Corollary 2.2. Let A = {a,,(x)} be a synanetric 2 x 2 matrix such that

<~~~~~~~ 2), -( i>.~r, 7I2 > 0,
Jaj~)J< i< o, a~ X~lt11 2 '2(71+S1



for all (mh 772) E R' and if TI is a conformal mapping, then we have

qkL('~ ~ ~~ ~~ 2 < -y , j(12~ yi + T, y > 0,

for any (711 , q72 ) E R 2 , where -yl and -y* depend on the mapping but not on Hence the

con formal mapping preserves the ellipticity of the operator

Let us note that Corollary 2.2 is also true under a weaker condition on TI , for example,

when

j(,p~j(T - JQ4') Idiag(di (x), d2 (X))

and

0 < kj ! di(x) ! k2 , for all X E Q.

Finally we would like to mention a conformal mapping which will play an important role

in forthcomraing sections:

Z Z X1 zx+ZX 2 ,(X1, X2 )Ce( resp)

= + iQ 1 2)E e* ( resp Q

and this mapping characterized by the constant a will be denoted by ( resp %P) re-

spect ively.



3. The p-Version of the Finite Element Method

Let Q C R 2 be a bounded domain whose boundary r is composed of smooth (analytic)

arcs 17, i.e. r =- UF,.

Consider now the following model problem

(3.1a) -Au = f in Q2,

(3.1b) u = 0 on D = UiE-ri,

au
(3.1c) = g on FN =UiE i,

where Dn"f = 6, FN U FD = F, and g E L2(FN). For simplicity we assume that FD €

(otherwise the solution would not be unique and we would have to use the standard

approach which would avoid this technical difficulty).

Let H'(2) be the usual Sobolev space and H' = {u G H'(!Q) : u = 0 on PD} then as

usual we will consider the weak solution of the problem: Find uo E H1 (SI) such that

B(uo,v) = F(v), for all v E HI(Q)

where

B(u, v) =fn Vu Vvdx,

F(v) ffjfvdx + j gvds.

Furthermore we denote JIu112 = B(u,u) and will call II.IIE energy norm. Because of the

assumption on rD we have IJuIIE = IjUIIHI(Qn.

Let us now consider a (fixed) partitioning of Q into the elements ej, i.e. = UT LS

in the previous sections. Because of the assumption about e, the vertices of Q axe the

vertices of some elements. We will assume that the partition and the (elemental) mappin2
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-;P, introduced in the previous section satisfy the (technical) conditions listed in ([4], [14])

that are satisfied in the code PROBE.

Let

Sp= {u E H'(Q): ule o P, is a polynomial of degree p on E for all element e},

where E is T or Q according as e is a triangular element or a rectangular element, and let

Np be the dimension of Sp. Then the p-version of the finite element method is now to find

up E Sp such that

B(up,v) = F(v), for all v E Sp

and then

(3.2) Iup - UOjjE = Mi w - UoILE.
wES,

We have now

Theorem 3.1. Let uo E H'D(Q) be such that

(3.3) IluollHk(a) < CDk!,k = 1,2,...

where Hk(f2) is the usual Sobolev space and C and D are constants independent of k, then

(3.4) Ifuo - uplE ce yR P

where c and -f > 0 are independent of p.

Proof. By modifying the proof given in [41, one can easily proceed the proof of this

theorem. Hence we will only outline the key steps of the proof.

(i) Denoting ue = u e the restriction of u on the element e, we define fie = ue o e, where

-D is the elemental mapping of the standard element E onto e.

11



(ii) We constru~ct ite,p E H' (E) which is a polynomial of degree p on E and approximates

the function d, in H'(E). Using (3.3) we get

(3.5) Idae - fI,pIIHI(E) : ce-t"

(iii) Let ii, = U,p 0 4 e , then d,, approximates u, on e and satisfies

I Ue -iie'pIIHI(-e) ! Ci -2

but fii H' (Q)

(iv) We construct a correction term on every e so that the correction function up, can be

member of H1 (Q) and satisfy (3.4). (QED)

We also have

Theorem 3.2. Let ft be a polygonal domain and if uso E Hq (n), q > 1 integer or fractional,

then we have

IIuo - Up lIE 5 CN-q11 IUI~~

If uO = crfla'(O)x(r, 0), where (r, 0) are the polar coordinates at the vertex A of Q ,O(O) is

a smooth function and x(r, 9) is a smooth cut-off function, then

IIuo - Up lIE !<CN O

For the proof, see [8]. (QED)

12



Example 3.1 Let Q be an L-shaped domain partitioned into 12 elements as shown in

Fig. 3.1 and

V = {1, 21

A/ = {3,4,5,6,7,81

g = 1 on Li,i = 4,5,6,7

g = 0 on L,,i = 3,8

Let us assume f - 0 and fR 0 denotes the circular subset of Q which is composed of the

curved triangular elements in Fig 3.1. Then on f = f2 - Q R0 the solution u0 satisfies

(3.3), but on Q it only satisfies u0 E Hs/a-(fQ), where f is an arbitrary positive number.

Moreover the solution has the leading term r 2 / 3 sin(2/3)0 near the re-entrant comer.

Hence applying theorem 3.2 we get

eo(p) = I1uo - UpliE < CN 2/ 3

IIUollE -

Fig. 4.2 shows EO in dependence on Np in log x log scale. It also shows the slope of the

rate Np2 3 . If we would solve the problem on Q then we would get

Iluo - UplIE < ce-'

that is, the exponential rate. Hence we see that the error decrease algebraically only be-

cause the function from Sp are not able to approximate well the solution in fQR 0 .

13
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Fig. 3.1. The Scheme of the L-Shaped Domain Q
and a Subdomain £?R0 .
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4. The Method of Auxiliary Mapping for the Laplace Operator.

So far we constructed the spaces S(e) by using the standard elemental mappings (D,

which were based on the blending mapping technique.

Let us now propose the question about optimal mapping technique which is adjusted

according to the character of the solution. To each element e we associate a mapping (P,

(see Section 2) which maps e onto e* = p,(e), and then use the composite mapping

(k, = (V)-1 0 %.

for constructing S(e). We will say that the set of mappings Pe is adrni3ib1 e if the mappings

{(,)- 1 o -%. } will lead to conforming elements (see Section 2). Now the problem is

following: Describe the families of admissible mappings and select one family that leads

to optimal (in some sense) results.

Let us show such a family on the mesh shown in example 3.1. Let us map the element

e,j = 7,..,12 (see Fig. 4.1) onto the element e by the conformal map (p')-', where

P: ' = z. The mappings {( )- .j = 7, ... , 12} stemming from the conformal mapping

a > 3/2 and the identity mappings pi, i = 1,2, ..6, lead to the conforming elements.

In fact (because R0 = 1) the curvilinear triangles e,j = 7,..., 12 are mapped by the

mapping (a) - onto the curvilinear triangle e; and the mapping is linear on the circular

arc. This together with the fact that 4%. has the circular arc property shows that elements

constructed by ," o -1%. are conforming. Using Corollary 2.1, we see that in our example

the elemental stiffness matrices of ej,j = 7, ..., 12 obtained by using the elemental mapping

4,, = o 0 4,e is identical with the elemental stiffness matrix of the element e* obtained

by using the element mapping 4%,. These stiffness matrices are directly computable, for

example, by the code PROBE. The conformal mapping V? then has the obvious form:

let (r, 0) be the polar coordinates in the z-plane and (p, t/) the polar coordinates in the

c-plane , then we have

r = p' and 0 = i'a; p = r"/a and 0 =/a

15



and if e ={(r,0)jO < r < RZo,,3o < 0 < 311 then e* ={(p,zk)O < r < , 3o/a < V, <

/3 )./a }. Hence we compute the elemental stiffness matrix for e in e* instead of in e, that

is, in the i-plane.

Assume now that f = 0 in (3.1) then the exact solution uO can be written in the form

of a series

00

(4.1) uo(r, 0) = Zakr(2/3)ksin(2/3)kO on QRo

k=1

The series converges absolutely on QR0 . Now using the conformal mapping p' : z =

we have 0 = uO o V' and

00

(4.2) fio(p,4) = ZakP(2/3)ak sin(2/3)oka on Q%.
k= 1

Hence if a = (3/2)m, m an integer, fti0 is an analytic function. Using now this mapping in

the finite element method we approximate the function fi0 on e instead of the function

u0 on ej. Denoting the finite element solution which is based on the elemental mapping

P o 4(, by uc, we get

Theorem 4.1. Let us consider the problem given in example 3.1 with f = 0. Suppose

a = (3/2)m , m is an integer. Then we get

Iu UI0E __ C

where C and y are independent of p (and hence N1p)

Proof.

IlUp -UOIIHI(e.) Cjup - iOII(e;)

and apply theorem 3.1 with minor modification. (QED)

16



Tables 4.1 shows the relative errors for m = 2/3, 1, 2 and 4. Note that m = 2/3 means

the case when no mapping technique was used. Figs. 4.2 and 4.3 show the error E in

log - x log.N scale and Fig. 4.4(a) shows the error in log 6 x V/7V scale.

We see the large improvement by this approach. The values a = m(3/2) is obviously

the most advantageous in this case. Nevertheless for general a > 1, a $ m(3/2) we get an

asymptotic improvement. By applying Theorem 3.2, we get

e7i

es*

Figure 4.1.The Scheme of QR 0 and Qf,
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3
TABLE 4.1. The Relative Error for a = m(-), m '/3,1,2,4

2
when f = 0.

1 1 a13 DOF

1 0.1628469724675572D + 00 0.1176835578896779D + 00 10
2 0.6774829063879436D - 01 0.2709809653006089D - 01 32
3 0.4267764860979481D - 01 0.1392839460138052D - 01 60
4 0.29302036352216401) - 01 0.4078061954970974D - 02 100
5 0.2236678198833828D - 01 0.1137579818794599D - 02 152
6 0.1794231933116408D - 01 0.3390584498845191D - 03 216
7 0.1486700458517911D - 01 0.97052803869325621) - 04 292
8 10.1261468544746016D - 01 10.2757048098,:,66325D - 04 380

(3) 4 (3)DO
1 0.2437842370603280D + 01 0.3913546088255135D + 00 10
2 0.2757060901917393D - 01 0. 13049 4'484223534D + 00 32
3 0.14084375280883711) - 01 0.2328733675022739D - 01 60

0.4142402706997820D - 02 0.4295634650207781D - 02 100
5 0. 1149455073984022D - 02 0.1237407887180692D - 02 152
6 0.3425494364421739D - 03 0.4100441132194179D - 03 216
7 0.9736221988286052D - 04 0. 1428178128929969D - 03 292
8 0.2746260993089290D - 04 10.4942584844978042D - 04 13801

Theorem 4.2.

(4.4) HIUp UOIE : (C

where C is independent of Np .

In theorem 4.1 and 4.2 the constant C depends on a. We have seen it in Table 4.1 and

Fig. 4.2, where the error when m = 4 was higher than that when m = 1.

To see more in details these effects, let us investigate the error of an approximation of

(x + 1)', x E I = (-1, 1) by polynomials in L2 (I)- norm.
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From part 1 of [12], we have

Theorem 4.3.

20+1/2
(4.5) EP -- Co(a) 2p+ 1)2a+ (1 + O(11p)) asp.- oo

where

C(1 + a)'sin raco(a) = 2a1)ir

The value a = 1/6 gives the rate E= O(p - 4/3 ) which is the same (in p) as in our

example when no mapping is used. In the table 4.2 we give values of EP for some values of

a and p when the term (1 + O(1/p)) is neglected. We also give the values of the norm of

(x + 1)' in L 2(I) which is of course an upper bound of the error. We selected the value of

a so that Isin ar I has same value in the formula (4.5). We can see the typical behavior,

that we have observed in Table 4.1, namely that for higher a the results are worse for

low p (and low accuracy) while they are better for higher degree of polynomial(and higher

accuracy). Hence in general the choice of a depends on the required accuracy.

In the above analysis, we have considered the mesh shown in Fig. 3.1. We can of course

use the meshes with concentric layers which are used in the h-p version too (see Fig. 4.5)

and use the mapping as before. By this we can combine mesh refinement approach and

the auxiliary mapping technique.

So far we have assumed that f = 0 and hence the solution in a neighborhood of the

corner can be expressed by the series (4.1). On the other hand, if f # 0,f E H'(Q) then

(4.1) is no longer true and the solution u0 in £lRo can now be written in the form(see,[19])

n 2 )k1n 3 2

(4.6) uo(r, 9) = E akr 3) sin(2/3)kO + - bkr 2 logrsin2k8 + v(r, 9),
k=O k=1

where v E H' 2 (QR)0 ), provided that (2/3)(n + 1) > s + 1.

22



Let us consider f = 1, then first term in the expansion of v is r 2 log r sin 2k0 and hence

in contrast to the previous case we can not achieve (in general) an exponential rate of

convergence even when f is analytic, but we can only have the rate NP 2, log N, ([81,[9]).

In general we expect that the positive effect by the auxiliary mapping technique will be

slightly smaller for f $4 0 than for f = 0. Table 4.3 shows the errors for the mapping

when a = m(2), m = 2/3,1,2, and 4, and m = 2/3 stands for the case when no mapping

technique was used . Fig. 4.6, 4.4(b) show the behavior of the error in the loge x log N

scale and loge x \/V respectively. We actually see the differences as predicted. We see

that the auxiliary mapping technique improves the accuracy very much when the degree

of polynomial is > 4.

So far we have used only one mapping. We can of course enrich the space S(e) of

elemental shape functions by functions stemming from identity mapping, i.e. by the usual

shape functions. We can also add analogous shape functions using the conformal mapping

= zO log z. By such an enrichment we can once more achieve that the rate of convergence

is exponential provided that f is analytic in Q. Of course the complexity in computation

now is higher and practical questions arise. However in contrast to the classical enrichment

approach one advantage of this is that it does not violate the finite element architecture(in

the implementation we add only internal shape functions of special type constructed by

the mapping procedure).

As we mentioned above selecting the particui. 3,r a properly and using higher degree

of polynomials yields high accuracy. Let us also state that we can use high degree of

polynomial only in the elements with vertex at the corners (in our example, elements 7-12)

while keepinig a low degree of polynomials in all other elements. A combination with mesh

refinement procedure is also a valuable alternative especially because of the easiness of

computing the local stiffness matrices.
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TABLE 4.2. The error ep and the L 2-norm Ilull of u = (1 + x)' on I
for a - (n + 1/6) and (n + 5/6), n = 0, 1,2,3,4.

a 1 TI 13

1 7.4731D - 2 3.4188D - 2 3.2166D - 2 4.3432D - 2 5.9688D - 2
2 4.3522D - 2 1.1596D - 2 8.3258D - 3 6.5471D - 3 6.8665D - 3
3 2.9657D- 2 5.3843D- 3 3.1913D- 3 1.7100D- 3 1.4805D- 3
4 2.2025D - 2 2.9696D - 3 1.5168D - 3 6.0361D - 4 4.5034D - 4
5 1.7272D- 2 1.8262D- 3 8.2602D- 4 2.5778D- 4 1.7031D- 4
6 1.4063D - 2 1.2107D - 3 4.9412D - 4 1.2555D - 4 7.4850D - 5
7 1.1769D - 2 8.4798D - 4 3.1661D - 4 6.7328D - 5 3.6720D - 5
8 1.0059D - 2 6.1941D - 4 2.1381D - 4 3.8859D - 5 1.9592D - 5
9 8.7406D - 3 4.6769D - 4 1.5049D - 4 2.3766D - 5 1.1170D - 5
10 7.6975D - 3 3.6272D - 4 1.0953D - 4 1.5233D - 5 6.7187D - 6
11 6.8543D - 3 2.8761D - 4 8.1951D - 5 1.0149D - 5 4.2242D - 6
12 6.1605D - 3 2.3233D - 4 6.2760D - 5 6.9858D - 6 2.7565D - 6
13 5.5809D - 3 1.9067D - 4 4.9023D - 5 4.9433D - 6 1.8565D - 6
14 5.0904D - 3 1.5863D - 4 3.8951D - 5 3.5825D - 6 1.2850D - 6
15 4.6707D - 3 1.3355D - 4 3.1412D - 5 2.6509D - 6 9.1077D - 7

Ijull 1.3747D + 0 1.5431D + 0 3.0238D + 0 2.3329D + 0 2.7495D + 0

17 19 23 25 29

1 1.4586D - I 2.5522D - 1 9.3989D - 1 1.9638D + 0 9.8958D + 0
2 9.7720D - 3 1.3049D - 2 2.7987D - 2 4.4624D - 2 1.3096D - 1
3 1.4357D - 3 1.5826D - 3 2.3129D - 3 3.0442D - 3 6.0879D - 3
4 3.2433D - 4 3.0810D - 4 3.3440D - 4 3.7930D - 4 5.6332D - 4
5 9.6187D - 5 8.0914D - 5 6.8870D - 5 6.9177D - 5 8.0567D - 5
6 3.4420D- 5 2.6126D- 5 1.8105D- 5 1.6411D- 5 1.5562D- 5
7 1.4132D - 5 9.8131D - 6 5.6915D - 6 4.7192D - 6 3.7452D - 6
8 6.4443D - 6 4.1370D - 6 2.0507D - 6 1.5720D - 6 1.0662D - 6
9 3.1925D - 6 1.9104D - 6 8.2288D - 7 5.8800D - 7 3.4655D - 7

10 1.6911D - 6 9.4970D - 7 3.6025D - 7 2.4157D - 7 1.2539D - 7
11 9.4678D - 7 5.0173D - 7 1.6947D - 7 1.0724D - 7 4.9565D - 8
12 5.5527D - 7 2.7896D - 7 8.4689D - 8 5.0804D - 8 2.1105D - 8
13 3.3880D - 7 1.6200D - 7 4.4555D - 8 2.5440D - 8 9.5736D - 9
14 2.1389D - 7 9.7678D - 8 2.4503D - 8 1.3361D - 8 4.4863D - 9
15 1.3910D - 7 6.0849D - 8 1.4005D - 8 7.3156D - 9 2.3041D - 9

1[u[ 3.9037D + 0 4.6895D + 0 6.8476D + 0 8.3136D + 0 1.2344D + 1
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TABLE 4.3. The Relative Errors in Energy Norm for a = m(3/2), m = 2/3,1, 2,4
when f =1

a 9 ()rDOF
1 0.6020654757148309D + 00 0.5706890379221034D + 00 10
2 0.1308957854381257D + 00 0.1009916680045339D + 00 32
3 0.992586686385120D -01 0.8092169418184365)- 01 60
4 0.42033661199631931) - 01 0.6942004795074728D - 02 100
5 0-3198798981482650D - 01 0.2059652008864891D - 02 152
6 0.25638989168347821) - 01 0.5410328220679518D - 03 216
7 0.2124137148103968D - 01 0.1410620291464109D - 03 292
8 10.1802105654621925D - 01 10.3647987063804444D - 04 1380

2- 43 3 DOF
22

1 0.6140576157783938D + 00 0.7227916745356786D + 00 10
2 0. 1153904981172256D + 00 0.1685768303941887D + 00 32
3 0.8432233140432240D - 01 0.9410470781118301D - 01 60
4 0.8046799392682128D - 02 0.2885998162978118D - 01 100
5 0.2159258500150655D - 02 0.1095935137932326D - 01 152
6 0.5484874342364825D - 03 0.3570789379357526D - 02 216
7 0.1413509051434937D - 03 0.1052197244808133D - 02 292
8 10.3612904449632896D - 04 10.3077579620346113D - 03 13801

Finally let us remark that if f :0 0 then the computation of the elemental load vector is

influenced by the auxiliary mapping. For example, if the conformal mapping 0

was used as in example 3.1 then

f =Ilj(,)If =a 2p2(al )(fop W)

has to be used for the elemental load vectors on the elements in %

In this section we are concerned only with the corner sin gulari ties, but our idea can be

extended to deal with some other types of singularity as well. For example, the boundary

singularity, known as the problem of Motz in the literatures(see [20], [25], [27]), can also
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be treated very efficiently by using an argument similar to that given in thiis section. It

will be elaborated elsewhere.

CA0 0?2

Figure 4.5. The Refined Mesh on the L-Shaped Domain Q for the h-p Version.
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5. The Method of Auxiliary Mapping for the General Elliptic Differential
Equation of Second Order.

In the previous sections, we have applied the auxiliary mapping technique to the Laplace

operator. In this section we will show that this tec-hlique (an also bc used fer general elliptic

boundary value problems. In the case of Laplace operator, Corollary 2.1 guarantees the

simpleness of computing the elemental stiffness matrices. However in the case of general

elliptic operator we need to use lemma 2.1 for computing elemental stiffness matrices and

hence the routines for differential equations with nonconstant coefficients should be used

for the computation in general. Even if the given problem has constant coefficients, the

coefficients we are concerned in the auxiliary mapping technique are polynomials in sin x

and cos x. This fact has to be taken in account because quadrature formula are used in the

computation of the stiffness matrices. Nevertheless they lead to uniformly elliptic operator.

Hence for f = 0 one can achieve once again the exponential rate of convergence as before.

Similar situation. also occurs for f 5- 0.

We now describe the mapping technique for the general case with the mesh shown in

Fig. 3.1. This goes as follows:

(Step a) Select parameter a for the mapping ,

(Step b) Map elements e7,..., e12 onto e;,..., e*12 by the mapping ( oa)- and construct the

coefficients of the transformed elliptic operator and bilinear form: Since (O'c)-i(z) =

zi/a we have

M[cos(1 - z)0, - sin(1 - a)o1M = sin(1- )o cos(1 -a)Vp

and by lemma 2.1 the coefficient qj, of the transformed elliptic operator can be com-

puted by the following formula

t = (1 -a)
ql l  oil, cos 2 t + &22 sin 2 t-(a 21 + a 12 ) sint cost

(5.1) al (i - a22 )sin t cost &21 sin2 t + a12 cos 2 t

q21=(all1- & 22 )sintcost a12 sin 2 t+& 21 cos 2 t
q22 = all sin 2 t + aZ22 cos 2 t + (&12 + &21)sint cost
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where &ij = aii o and (p, Vk) is the polar coordiates in the i-plane.

(Step c) Taking care of numerical integration, compute the elemental stiffness matrix on e-

with the coefficients qj 3() and the elemental load vector on e* with the right hand

side f = (a p2 " - 11) . (f(p, p))

(Step d) Determine the finite element solution UFE by solving the assembled global system.

The solution at a point x E ej can be obtained by evaluating the solution on e* at

=

It is worth to note the following observation about the case when the coefficient ai,

are constants: suppose A1 and A2 are the eigenvalues of the symmetric matrix A = [a,.]

then there is an orthogonal matrix P such that PAP T = diag (A,, A2 ). If T denotes the

mapping defined by

= 1 1

then T maps the elliptic subdomain

2  Y 2
K = {(x,y) : - + < I} nf

A, A2

onto the circular subdomain £1 R, = {z : Izi < 1} fl Q. Let us denote P-(K) and

(:Q)-i( Ro) by k and Q% respectively. That is,

/' , ( O)-'W
K Ro + Q%.

Then by an argument similar to that of lemma 2.1 we have

(5.2) JJ(Vu) -A .(VV)T dx = V d
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In particular, if a12 = a21 = 0, we have

(5.3) (aOx Ox Ox2  2

and the computation of elemental stiffness matrix and load vector on e* in Q% is as simple

as the case of Laplace operator. We can also use here the triangular elements with elliptic

arcs which are allowed in PROBE. The mapping Technique together with this observation

is leading to another approach to deal with interface singularities. Detailed argument of

this will be presented elsewhere.

In similar way, we can treat the plane elasticity problem. For example, in the case of

crack where the sides are not loaded the solution has a simple form and the auxiliary

mapping technique with the conformal mapping z = ' will lead to the rate N; a of

convergence analogously as before. Unfortunately in contrast to the case of the Laplace

operator the local stiffness matrices has to be computed via nonconstant coefficients of the

form similar to (5.1).

6. Elliptic Problems on Unbounded Domains.

In a similar manner to the previous sections the method of auxiliary mappings can deal

the problems on unbounded domains. Let us address this with a model problem on an

unbounded domain S1 with bounded boundary F (this is , Q is the outside of a bounded

domain enclosed by a simple closed curve I).

(6.1 a) -Au = f in Q ,

(6.1b) u=0 onFD,

(6.1c) gonN,
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where ED and FN are unions of analytic arcs as section 3 and r is a simple closed curve.

For simplicity we will assume that ED - 0 and the orgin is inside of r.

Let Q, be the conformal mapping = j, and let

TV'~ {Q I) u E L, (Q): U Ju2Ij((p)I+JJ VU. VU) < 00},

Wh(Q) = {u E W 1(, %): u = 0 on tD}

Suppose

IjIf12J()- < 00,

then there exists a unigue u E Wb(Q) such that

Jj Vu. Vvdx = Jfnfvdx + jr gvds, forallvE W%(Q)

Suppose the mesh on Q is as shown in Fig. 6.1. Then by the conformal mapping T

the infinite elements e? will be mapped to the curvilinear trangular elements e . Now

we can proceed as before. For example, suppose f = 0 and on r = 9Q we prescribed

the same boundary conditions as section 3 and the mesh on Q is as shown in Fig. 6.1.

Then combining the auxiliary mapping technigue in the neighborhood of every vertex and

the auxiliary mapping %P for the infinite elements we can achieve an exponential rate of

convergence as before, i.e.

Iuo - p1I W,(f,P) - Ce- Np

Let us show one numerical example.

Example 6.1. Let us consider Laplace's equation on Q = {z : z > 1/2}. Suppose

iR0"- {z : zI < 1} , the mesh is as shown in Fig. 6.2. and we impose the nonhomoge-

neous Dirichret boundary condition on F by the true solution u(x, y) = x/(x 2 + y2 ). Then
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the relative error in energy norm is as shown in Table 6.1 and we can see once again the

exponential rate of convergence in Fig. 6.3.

Table 6.1. The Total Strain Energy and The Relative Error

for Laplace's Equation on the Unbounded Domain.

p Total Energy Relative Error in Energy Norm DOF
1 11.16236197243942 0.3342565747335926D + 00 9
2 12.43592792490380 0.1018837543895582D + 00 29
3 12.56842346856016 0.1278127328426342D - 01 53
4 12.56658836901951 0.4162735313104689D - 02 89
5 12.56637844630835 0.7894597600800805D - 03 137
6 12.56637082991567 0.1309711457162764D - 03 189
7 12.56637061959958 0.2042102697231802D - 04 269
8 12.56637061447803 0.3075441953279617D - 05 353

Similar approach can also be applied for the conformal mapping = 1/(z') and also for

the general differential equation and elasticity problems. It is essential that the solution

has finite energy and that we consider the behaviour of the solution at oo. So far we

mentioned only the case when the boundary is bounded only. By the same approach we

can deal with infinite domains such as half plane etc. We memtion that the implemention

of the infinite elements is exactly zz simple as for ther finite elements we disscused in

previous sections. Many times we are dealing with the case that the solution does not

belong to the space H1 (f2) because of the behavour at co. Typical case is when on the

bounadry r we prescribed the following singular boundary condition:

Ou Jgds #0 and f = 0.
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Then the solution at oo is of form u -, C log r and we have to enrich the space of elemen-

tal shape functions by this function analoguously as we disscussed earlier. Of course we

have to adjust the approach to the fact that we deal with one shape function with infinite

energy. This can be dealt in different manner.

7. Conclusion

The h-p version allows a very effective and simple treatment of the singularities of

the solution caused by the comers of domains and by the unboundedness of domains in

R 2 . This approach can be combined with elemental enrichment procedure and the mesh

refinement procedure.

By using this approach one can obtain a higher rate of convergence in almost all appli-

cations. From the view-point of implementation, the easiest and the cheapest approach

is the auxiliary mapping technique with possibly nonunifom polynomial degrees over

the elements.
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